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Practical methods for calculating rates of unimolecular reactions

DONALD L. THOM PSON

Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma

74078, USA

This review focuses on practical methods for calculating rates for unimolecular

reactions in large molecules. We describe methods based on classical and

semiclassical approximations for which realistic full-dimensional calculations
using global potential energy surfaces are feasible. We describe a set of methods

that can be used to treat unimolecular processes over the entire energy range : for

statistical and non-statistical dynamics, for random and mode selected initial
conditions, and when tunnelling eŒects are important. Standard classical trajectory

simulations can be used when the classical approximation is valid but are limited

to high energies since the long numerical integration times required at low energies
are not feasible. Monte Carlo variational transition-state theory can be used at

energies near threshold where the dynamics are usually statistical. The rates in the

energy range above the statistical limit and yet below that accessible by
straightforward classical simulations can be computed using intramolecular

dynamics diŒusion theory. Semiclassical approaches can be used to include

tunnelling eŒects in classical trajectory simulations.

1. Introduction

EŒorts to predict the rates of chemical reactions began in the 1880s [1, 2] with

attempts to explain the temperature dependence of reactions. These eŒorts resulted in

not much more than empirical relationships with some underpinnings of simple

primitive ideas of their meaning. The application of statistical mechanics and collision

theory to reactions [3] provided the ® rst signi® cant steps towards actual theories. The

idea that colliding molecules form an activated complex in the region of a potential

barrier between reactants and products, with a quasi-equilibrium existing between the

reactants and activated complex [4] was the basis for the thermodynamic formulation

of transition-state theory (TST) [5, 6] ; `Eyring’ s TST ’ dominated the ® eld for more

than three decades owing in large part to the ease with which calculations could be

performed without digital computers.

Wigner [7(a)] proposed a more general, and dynamically based, version of TST in

1938, which has served as the basis for the modern development of statistical theories

(for example [8]). (The classical TST was ® rst proposed by M arcelin [7(b)]; Horiuti

[7(c)] also contributed to the development of the theory at about the same time as

W igner.) W igner assumed that the rate constant is an ensemble average of the ¯ ux v v

of classical trajectories across a critical surface q
c

that separates the reactants the

reactants and products :

k(T ) = © d (q –q
c
) r v v r ª . (1)

Keck [9] used this idea to formulate a variational `phase-space theory ’ (PST) of

reactions providing a link between TST and classical trajectories [10]. Keck’ s PST

ideas were used by Anderson [11] to simulate reactions with classical trajectories

originating at the transition state, providing a method for simulations of reactions that

are too slow to be treated by straightforward quasiclassical trajectory methods, which
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548 D . L . Thompson

had, with the advent of modern computers, come to play a central role in theoretical

studies of reactions. Following a brief period in which much of the emphasis was on

applications on classical trajectory simulations, there was a renewed focus on TST and

it is again widely used. The return to TST ideas came about with a better understanding

of the dynamical basis of the assumptions on which it was based. Pechukas and

M cLatterty [12], Pechukus [13] and M iller [14, 15] examined the TST assumptions

within the context of classical dynamics and developed a more explicit formalism that

reveals the exact nature of the statistical assumptions and their relationships to the

dynamics. For an excellent succinct discussion of the dynamical foundations of TST,

see [16].

Much of the development of TST has focused on bimolecular reactions, resulting

in variational transition-state theory (VTST) [17] ; however, the ideas are applied to

unimolecular reactions in the Rice± Ramsperger± Kassel± M arcus (RRKM) theory (for

example [18]).

The basic mechanism for unimolecular reactions involving collisional energization

was proposed by Lindemann [19], and the important idea that the energy is distributed

among the normal modes of the energized molecule was suggested by Hinshelwood

[20]. According to the Lindemann ± Hinshelwood mechanism, molecules gain internal

energy in collisions until they possess su� cient energy to react and then, unless they

experience deactivating collisions, intramolecular vibrational energy redistribution

(IVR) leads to molecules with enough energy in the reaction coordinate mode to

traverse the barrier to the products and, ® nally, if the molecules attain critical

con® gurations (i.e. arrive at the transition state moving in the direction of the product

valley), reaction occurs. Under these conditions the rate of reaction is usually slow

compared with that for the energy ¯ ow to the reaction coordinate, and the dynamics

that determine the reaction are statistical. W hen this is true, the rate can be calculated

by using a statistical theory.

The simplest theoretical treatment of statistical unimolecular reactions is the

classical Rice ± Ramsperger± Kassel (RRK) [21, 22] theory, which is based on the

assumption that the microcanonical rate coe� cient is determined by the probability of

the energy needed for reaction is located in the critical mode. The RRK expression for

the unimolecular reaction rate is

kRRK (E ) = m 0 1 –
E*

E 1 s Õ "

, (2)

where m is a frequency factor, E* is the energy required for reaction and s is the number

of eŒective degrees of freedom. Theoretically s = 3N –6 if the dynamics are truly

statistical, but less than that if they are not. While the RRK theory predicts the correct

energy dependence in the statistical limit, it does not yield quantitative predictions of

the rates. One must turn to a treatment with less severe approximations for that.

The RRKM theory is much more accurate and is widely applicable. It is a

microcanonical TST based on the assumption of statistical distributions of energy

among quantum states. It also yields a simple expression

k(E ) =
N ‹ (E )

h q (E )
. (3)

The sum of states N ‹ (E ) for the activated complex with energy E and the density of

states q (E ) for the reactants at total energy E are commonly evaluated by using a direct
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Calculating rates of unimolecular reactions 549

count of quantum states for a set of independent harmonic oscillators [18]. This, of

course, ignores the anharmonicity of the potential in favour of accounting for the

quantized energy levels of the molecules (for example [23]). However, methods exist

for state counting for anharmonic potentials [18].

These theoretical approaches based on TST ideas were of enormous importance in

the evolution of our understanding of thermal chemical kinetics and remain valuable

methods for calculating rates. However, they were developed before the general

availability of digital computers and the advent of experimental techniques (e.g.

molecular beams and lasers) that probe the details of reactions. These changed the

emphasis of theoretical studies of chemical reactions. Classical trajectory simulations

and time-dependent quantum calculations became more relevant. Semiclassical

methods [24± 26] were used to augment these by providing ways of treating quantum

eŒects when rigorous quantum-mechanical treatments were not possible.

Thus, we now have available a variety of practical methods, based on classical,

semiclassical and quantum mechanics, that can be used to perform explicit realistic

simulations and accurate rate calculations. Our interest here is on unimolecular

reactions in large molecules, and more speci® cally on methods that allow for the

explicit treatment of the multidimensional eŒects. Thus, the methods of practical

interest are based on classical and semiclassical mechanics. The underlying ideas

derive from classical trajectory simulations, although the methods incorporate

approximations and other methods to attain the pragmatic goal of accurately

predicting the rates of realistic models.

Bunker [27] published the ® rst classical trajectory studies of unimolecular reactions

and laid much of the groundwork for the focus on the chemical dynamics of

unimolecular reactions. Prior to Bunker’ s work, the most signi® cant attempt to treat

explicitly the dynamics was made by Slater [28]. Slater’ s theory, although not accurate

enough for practical applications, provides a useful simple way of thinking about

unimolecular reactions. The rate is de® ned as the frequency of `up-zeros ’ in a reaction

coordinate function de® ned as a linear combination of normal modes. Since the modes

are separable, the time evolution (and thus the rate) can be calculated using the

analytical solutions for harmonic or anharmonic oscillators.

Classical trajectories have been used extensively to study unimolecular reactions

over the past three decades and have provided a practical means of computing rates as

well as a great deal of insight into the fundamental nature of the underlying dynamics,

IVR and reactions. Obviously, there are some disadvantages to using classical

simulations to compute unimolecular reaction rates. First, the simulations are

expensive ; they are often not feasible at energies near threshold since the time required

for reaction can be far greater than that for which it is possible to perform accurate

numerical integration of the equations of motion. M ore important, there can be

signi® cant quantum eŒects. Classical trajectories have the advantages, when valid,

however, in that they yield detailed pictures of the dynamics and are relatively easy to

carry out. If the system of interest behaves classically and the numerical integration is

feasible for the time scale of the processes of interest, then the classical trajectory

approach is naturally preferred. However, we need to turn to other methods when

these conditions are not met.

In this review we describe practical methods that can be used to compute

accurately the rates of unimolecular reactions in large molecules for all ranges of total

energy for realistic potential energy surfaces. The underlying dynamics responsible for

isomerization and decomposition reactions of polyatomic molecules can change from

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
5
8
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



550 D . L . Thompson

statistical to non-statistical with increasing energy and, while they are essentially

classical, they can be dominated by quantum eŒects under certain conditions. Thus, it

is necessary to select the appropriate method based on the conditions. We discuss the

nature of dynamics for the various energy regimes and describe practical methods that

can be used to simulate unimolecular dynamics and to compute rates of reactions. We

discuss the limitations of practical applications of classical trajectory simulations. We

describe how to take advantage of the ease of applying TST when the dynamics are

statistical and do so by using M onte Carlo methods to account for realistic forces

among all the modes of the system. W e show how diŒusion theory can be used when

these other methods are not applicable. Finally, we describe a multidimensional

semiclassical approach that can be used to incorporate tunnelling corrections into

classical simulations.

2. The classical approximation

The main reason for the widespread use of classical simulations is pragmatism

rather than their fundamental correctness ; it is the only practical way to treat many

problems. However, it should be noted that comparisons of the results of classical

simulations with those for quantum mechanics, semiclassical approaches and

experiments have shown the approximation to be valid for a wide range of chemical

problems. Nevertheless, it is appropriate to keep in mind the limitations of the validity

of the classical approximation. The neglect of quantum interference eŒects is the most

signi® cant approximation in classical trajectory simulations. When they are important,

as in tunnelling, non-adiabatic processes or the basic behaviour of the dynamics (e.g.

resonances or other `quasi stationary state ’ characteristics of a system, and the proper

behaviour of zero-point energy (ZPE)), one must turn to a quantum-mechanical or

semiclassical approach.

Since interference eŒects are most important at low energies and for light atoms,

they can dominate at energies in the region of the reaction threshold and for motions

of hydrogen atoms. The neglect of interference eŒects can lead to signi® cant

underestimation of the probability of passage over a potential barrier when the energy

is near the barrier height. Of course, reaction is forbidden when the energy is below

the barrier although, in reality, quantum-mechanical tunnelling occurs (with negligible

probability in most cases, but signi® cant in some cases). Interference eŒects are most

evident at the microscopic level but tend to be `averaged out ’ in macroscopic

properties. The diŒerences in classical and quantum-mechanical results are much

greater for one-dimensional systems, particular at low energies, than for three-

dimensional systems, and interference eŒects may be manifested in state-to-state cross-

sections but not evident in thermal rates. Since chemists are often interested in highly

averaged properties, the classical approximation is usually good enough.

The aphysical behaviour of the ZPE can be a problem in classical simulations of

polyatomic molecules [29]. The ZPE of a large molecule can be signi® cantly greater

than the energy needed for reaction, and thus classical trajectories with initial

conditions selected using a quasiclassical approximation can result in reaction below

the true threshold or even lead to products for energies below ZPE levels. The ZPE in

a real system is constrained by interference eŒects ; however, in a classical simulation

it ¯ ows without these restrictions and can potentially lead to aphysical behaviour,

rendering the classical approximation invalid. Unfortunately, there is not a sat-

isfactory way to correct this [29], except by using semiclassical corrections (which can

be di� cult to apply in some cases).
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Calculating rates of unimolecular reactions 551

Some of the ZPE problem may be due to how the classical ± quantum cor-

respondence is interpreted, that is to how the trajectory results are analysed. The

interpretation is clear in the case of semiclassical eigenvalues, where the corre-

spondence of the invariant tori in classical phase space with the quantum-mechanical

eigenvalues n is de® ned by the Einstein± Brillouin ± Keller (EBK) condition

, p dq = h(n 1 "
#
). (4)

However, this is rigorous only for bound systems. For unbound systems (e.g. chemical

reactions), the appropriate correspondence is between the quantum-mechanical

expectation value of the observable and the proper ensemble average of its classical

analog, which are expected to be equal only in the limit of high energy. Thus, in

applications of classical mechanics to processes such as chemical reactions, it is

ensemble averages that have physical meaning. Individual trajectories of a quasibound

system must be interpreted only within the context of the ensemble average.

In the quasiclassical approximation, the system is initially speci ® ed by a set of

quantum numbers for the normal modes ; thus the wavefunction is represented by an

ensemble of classical trajectories with the appropriate action integrals and uniformly

distributed initial phases. The expectation value of an observable for a given set of

quantum states corresponds to the ensemble average of the trajectories on the

corresponding tori. The system begins in accordance with quantum mechanics but

evolves according to classical mechanics. The proper interpretation of the results is in

terms of the correspondence of the ensemble average and the expectation value. It is

not clear how to improve upon this. Furthermore, it is important to note that the

correspondence of wavefunctions with phase space applies to the high-energy limit,

while at low energies, where the uncertainty principle precludes de® ning probability

density functions, the quantum eŒects are most signi® cant. Thus, it is not theoretically

justi ® ed to assume that regions of phase space where the energies are less than the zero

point values are aphysical. On the other hand, ensembles of classical trajectories on a

torus do not correspond exactly to wavefunctions, thus indicating a problem.

Classical trajectories should be used with proper consideration of these points, the

most fundamental being that it is only the ensemble average that has physical

meaning. Properly correcting classical behaviour for quantum eŒects can only be done

on a valid theoretical basis by semiclassical approaches.

3. Statistical and dynamical regimes

The basic assumption of statistical theories of unimolecular reactions such as the

RRK and RRKM theories is that IVR is rapid compared with the rate of reaction, and

that the rate constant k(E ) corresponds to a microcanonical ensemble [18]. This is

certainly the case when the dynamics are chaotic. The dynamics of large molecules

tend to display quasiperiodic behaviour at energies well in excess of the reaction

threshold [30]. Nevertheless, there is su� cient mode mixing that `statistical ’ reaction

rates are commonly observed. That is, at energies near the reaction threshold, the rates

of reaction tend to be slower than the rates of IVR, and the rate constant can be

predicted by statistical theories such as RRKM and VTST. However, at high energies,

the rate of reaction can become much faster than the rate of IVR, and the reaction rate

must be calculated by a method that takes into account the non-statistical dynamics.

This is illustrated in ® gure 1. In the region of the reaction threshold energy the energy

dependence of the rate generally obeys the RRK equation ; that is, a plot of ln k against

ln(l –E* } E ) is linear as shown by the solid line in ® gure 1. This behaviour extends well
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552 D . L . Thompson

Figure 1. Illustration of the divergence of `statistical ’ and `dynamical ’ unimolecular reaction
rate constants with increasing energy. The solid line shows the statistical rate extending

down to the reaction threshold. The broken curve illustrate the eŒects of IVR-limited

reaction, where the rate of reaction is su� ciently fast to deplete the population of phase
space near the transition state and thus the observed rate of reaction corresponds to the

rate of energy diŒusion into the `reaction coordinate’ . (`Recrossings ’ of the dividing

surface in TST would account for some of the diŒerence ; however, it is mainly due to
what Bunker and Hase called intrinsic non-RRKM behaviour.)

above the threshold ; however, at energies well in excess of the threshold the true rate

deviates from this linear behaviour, as illustrated by the broken curve in ® gure 1.

We have demonstrated the behaviours shown in ® gure 1 for realistic models of

various kinds of molecules by comparing the Monte Carlo variational transition-state

theory (MCVTST) and classical trajectory stimulation results [31]. At higher energies,

the statistical rate is always greater than the true rate, which is controlled by the IVR

rate. The behaviour at high energies is the result of weak coupling between the

vibrational `bath ’ and reaction coordinate modes (or, more precisely, vibrational

states) of the molecule. (This is sometimes attributed to `bottlenecks ’ in phase space.)

This is the intramolecular equivalent to the low-pressure behaviour in gas-phase

unimolecular dissociation reactions where the rate of intermolecular energy transfer to

the molecules limits the reaction rate. Bunker and Hase [32] categorized the various

kinds of behaviour of unimolecular reaction in terms of lifetime distributions. They

referred to the case of IVR-limited unimolecular reactions as `intrinsic non-RRKM ’

to distinguish it from the non-statistical behaviour when the collisional energy transfer

is slower than the rate of reaction. These behaviours are usually discussed in

qualitative terms [33± 35], although quantitative models have been presented [36, 37].

In the standard classical trajectory approach, an ensemble of initial phase space

points are selected by a Monte Carlo procedure and propagated in time by numerically

integrating Hamilton’ s equations of motion. The reaction rate constant can be

obtained from the computed lifetimes of the molecules [38]. Even when initial

conditions are randomly selected according to a microcanonical distribution, the

computed rate constant can be lower than that predicted by a statistical theory,

particularly at high energies [31]. In fact, non-statistical behaviour can be most clearly

distinguished by comparing classical trajectory rates with those computed using a

classical TST, particularly if the calculations use the same potential energy surface

(PES) [31]. Comparisons are usually made between trajectory and experimental results

or those predicted by RRKM or RRK. Since these statistical theories are based on

harmonic vibrations, the causes of any disagreements are not clear. The RRK
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Calculating rates of unimolecular reactions 553

Table 1. Comparison of values of the RRK parameter s computed from classical trajectories

and the theoretical number of degrees of freedom 3N –6 for unimolecular reactions of

silicon compounds.

Reaction

S

3N –6 Trajectory Reference

SiH
#
! Si 1 H

#
3 2.24 [39]

SiH
#
! Si 1 H

#
3 3.10 [40]

Si
$
! Si

#
1 Si 3 2.67 [41]

SiH
%
! products 9 2.3± 2.8a [42]

H
#
Si ? SiH

#
! SiH

#
12 8.15 [43]

H
#
Si ? SiH

#
! H

#
Si ? Si 1 H

#
12 11.2 [43]

H
#
Si ? SiH

#
! HSi ? SiH 1 H

#
12 5.45± 6.38b [43]

Si
#
H

’
! 2SiH

$
18 8.10 [44]

Si
#
H

’
! Si

#
H

&
1 H 18 8.03 [44]

Si
#
H

’
! SiH

%
1 SiH

#
18 10.26 [44]

Si
#
H

’
! 2SiH

$
18 8.49 [44]

Si
#
H

’
! H

$
Si E SiH 1 H

#
18 13.69 [44]

Si
#
H

’
! H

$
Si E SiH

#
1 H 18 8.06 [44]

a Fits were done for a range of E* values.
b Trajectory calculations were done for three diŒerent PESs. The range of n values are for RRK
® ts to the trajectory results for the three surfaces, which diŒer mainly in the barrier height for

the ring ® ssion reaction.

equation (2) is often used as a convenient analytical function for ® tting the energy

dependence of unimolecular rates. The value of s, the number of eŒective degrees of

freedom, then indicates the extent of the statistical behaviour of the dynamics if the

harmonic approximation is valid (which it can be for experiments since the average

energy per mode is small). Theoretically s = 3N –6, but the values obtained by ® tting

trajectory results are often signi® cantly smaller. The RRK theory usually ® ts the

energy dependences of rates in the reaction threshold region ; however, trajectory

results are usually for much higher energies, and there the ® ts are not so good. The ® ts

are often good for small molecules, where all the bonds are identical, but large

molecules composed of diŒerent types of bond show greater non-statistical behaviour

and thus the ® ts are usually not good. This is illustrated by the results in table 1 for

several silicon compounds.

What this means in practice is that one needs to use diŒerent methods for diŒerent

energy regimes for computing the decay rates of large molecules. The rates near

threshold can be computed using a statistical theory and those at high energies by

classical trajectory simulations. We have shown that the rates in the intermediate

region can be computed using an energy diŒusion theory.

4. Classical trajectory simulations

Monte Carlo classical trajectory approaches are well understood and widely used ;

thus we shall only brie¯ y describe the methods (mainly for completeness) as we have

been using them. For further details, we refer the reader to a recent, more thorough

review [45].

Classical trajectory simulations of large systems are performed by integrating
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554 D . L . Thompson

Hamilton’ s equations of motion in laboratory-® xed Cartesian coordinates. For N

atoms, the 6N coupled ® rst-order equations are

qd i =
¥ H(q, p)

¥ pi

, pd i =
¥ H (q, p)

¥ q i

(i = 1, 2, ¼ , 3N ), (5)

where q i and p i are the positions and conjugate momenta respectively. The

Born± Oppenheimer separation is assumed :

H(q, p) = T(p) 1 V(q). (6)

In laboratory ® xed Cartesian coordinates, the kinetic energy is quadratic and diagonal :

T(p) = 3
$ N

i= "

p #
i

2m i

. (7)

The potential energy V is usually written in terms of valence coordinates for

convenience, and the chain rule is used to transform to Cartesian coordinates.

The initial conditions are selected to correspond to the experimental conditions of

interest. Usually, they are selected to yield either a quasiclassical or a classical

microcanonical distribution. The quasiclassical procedure assigns energies to the

normal modes in accordance with quantum rules (thus, including the ZPE) ; this is

particularly useful for studying low-energy and state-selected initial conditions. The

assignment of classical microcanonical initial conditions is based on M etropolis [47]

M onte Carlo sampling [46, 48± 52].

Quasiclassical initial conditions are based on the normal mode approximation and

thus the energy levels are given by

E i = (n i 1 "
#
) h m i = "

#
Qd #

i 1 "
#
k i Q #

i (8)

where n i is the quantum state of mode i corresponding to energy E i , Q i is the normal

mode coordinate and k i = 4 p # m #
i is the force constant. The vibrational phase for the

harmonic oscillator is randomly selected for the distribution function [53] :

F(Q ) =
1

[ p (Q #
!

–Q # )] " / #
, (9)

where Q
!

is the maximum classical displacement for the oscillator in the speci® ed

quantum state. Details of how the Monte Carlo selections are made, as well as how to

do so for anharmonic modes [54], have been given elsewhere [45, 55]. Since the actual

potential used in a simulation is usually anharmonic and coupled while the Monte

Carlo selections are based on the normal mode approximation, it is necessary to scale

the coordinates and momenta to give a ® xed total energy [45].

Angular momentum can be assigned by adding velocities due to rotation to each

atom (for example [56]). The initial rotational energy is precisely de® ned by this

procedure since the angular momentum is exactly zero in the assignment of the

vibrational energy.

This procedure, however, does not precisely de® ne ® xed initial vibrational energies

for each mode because of the scaling of the harmonic assignments to give a precise

value of the total energy. The accuracy of the quasiclassical initial conditions then

depends on the degree of anharmonicity and coupling.

Adiabatic switching [57, 58] can be used to de® ne initial states precisely. A useful

application of adiabatic switching is in the calculation of semiclassical eigenvalues (for

example [59]). Adiabatic switching is based on the assumption that a multidimensional
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Calculating rates of unimolecular reactions 555

Hamiltonian can be written as separable zeroth-order terms plus higher-order terms

that couple them and, based on Einstein’ s adiabatic hypothesis, for example [60] (i.e.

the classical actions are conserved in an adiabatic slow process) that the zeroth-order

Hamiltonian is approximately conserved as the perturbing interactions are slowly

turned on (about 10 # vibrational periods in practice). This obviously assumes regular

motion. Various time-dependent switching functions are used to introduce the

coupling ; Johnson [58] suggested and tested several. Huang et al. [61] have used

adiabatic switching to generate semiclassical initial conditions for a trajectory study of

the bimolecular reaction H 1 CD
%
! HD 1 CD

$
. Adiabatic switching is di� cult to

apply for many degrees of freedom and at high energies owing to crossing resonance

zones and irregular dynamics ; thus it is not particularly useful for studies of

unimolecular reactions. Furthermore, many of the problems of interest do not depend

on sampling good action angle variables, even if they exist.

Metropolis M onte Carlo sampling [47] is well suited to averaging over the phase

space of a multidimensional system, for example highly excited polyatomic molecules.

It is e� cient, practical and easily implemented. Since there are excellent thorough

descriptions of M onte Carlo methods already available [62± 67], it is not appropriate

for us to go into details here. Thus, we provide only a brief introduction with

references to relevant reviews.

Metropolis M onte Carlo sampling is a convenient way to compute estimates for

integrals of the type :

© G ª =
!
V

G(x)F(x) dx
!
V

F(x) dx
, (10)

where F(x) is the probability density. The M onte Carlo approximant is

© G ª =
R N

i = "
G(x i ) F(x i )

R N
i= "

F(x i )
, (11)

where the points {x i}are randomly chosen with uniform probability over the region V .

A M arkov walk is generated with the function F determining the probability of

accepting or rejecting attempted steps. These are the kinds of integral that must be

evaluated to compute ensemble averages. The probability density for the canonical

ensemble is

F(q, p) =
exp[ –H(q, p) } j T ]

!
V

exp[ –H (q, p) } j T ] dq dp
; (12)

where H(q, p) is the system Hamiltonian, q and p are the position coordinates and

conjugate momenta respectively. Although the Metropolis M onte Carlo methods

were developed, and mostly widely used, for canonical ensemble sampling, they are

easily applied to the microcanonical ensemble, which is appropriate in unimolecular

reaction rate constant calculations. The probability density for the microcanonical

ensemble is

F(q, p) =
d [E –H(q, p)]

!
V

d [E –H (q, p)] dq dp
, (13)

where d is the Dirac delta function.

Bradly et al. [48] originally suggested a procedure using M etropolis sampling to

generate initial conditions for classical trajectories. A sequence of phase-space

con® gurations are randomly generated to give a Markov chain, with some of these
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556 D . L . Thompson

con® gurations,picked at arbitrary points along the walk, providing starting conditions

for classical trajectories. For the microcanonical ensemble, the probability density is

P(q, p) = d [H(q, p) –E ] ; (14)

all phase space points with energy E have equal weights. The random walk is begun at

an arbitrary point in phase space, usually the equilibrium geometry (for convenience)

with the momenta assigned to give the desired total energy E . A Markov chain is

generated by attempting random changes of (0.5- n
"
) D q and (0.5- n

#
) D p in the

coordinates and momenta respectively of one or more of the atoms ; the n i are pseudo-

random numbers uniformly distributed on (0, 1), and D q and D p are the maximum step

sizes. The coordinates and momenta of other atoms are changed to conserve the centre

of mass of the system. The walk is arbitrarily restricted to the con ® guration space of

the reactants. The M arkov walk is restricted to an energy shell about E by using a

prelimit delta function to accept attempted steps :

P(q, p) =
e

e # 1 [H (q, p) –E] #
, if r H(q, p) –E r % f e , (15)

P(q, p) = 0, if r H(q, p) –E r " f e , (16)

when f " 0 and e is a parameter that determines the width of the delta function. The

trial con ® guration is accepted if

P(qtrial , ptrial )

P(qold , pold )
& n

$
, (17)

where n
$

is a pseudorandom number ; otherwise the attempted move is rejected and the

`old ’ con ® guration is taken as the `new ’ con® guration. This procedure is repeated

until the computed properties converge. It has been found empirically that the

convergence is fastest when the acceptance-to-rejection ratio is about 0.5. The values

of the parameter e and the step sizes D q and D p, as well as the number of variables

randomly adjusted for each move, are chosen to optimize the rate of convergence.

Very long M arkov walks are usually required to sample phase space adequately.

One could, of course, calculate a classical trajectory at every step in the walk ; however,

this is not necessary. Following a long `warm-up ’ sequence, small batches of

trajectories (say, ® ve) can be computed periodically for short sequences of phase space

points along the walk [48]. This is an arbitrary scheme to select appropriately weighted

initial conditions. It is relatively ine� cient since it is necessary to balance the width of

the prelimit delta function and step size to realize a reasonable acceptance-to-rejection

ratio.

There are various ways to improve upon this basic approach. For example,

jump ± walk sampling schemes can be used to increase the rate of exploration of the

phase space [68]. In a simple M arkov chain it is possible for the walk to become

`trapped ’ for long sequences of steps in local regions of phase space. Thus, schemes in

which `jumps ’ are interspersed with walk sequences can improve the rate of

convergence. Since it is possible to separate the kinetic and potential energies, it is not

necessary to sample momentum space. The kinetic energy can be obtained analytically

[69, 70]. This is useful in applications of Monte Carlo averaging to compute reaction

rates (as described in Section 5).

Nordholm and co-workers [49, 50] have developed a method, which they call

e� cient microcanonical sampling, which is a re® nement of the methods just described.

The delta function is replaced by the exact con ® gurational statistical weight

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
5
8
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



Calculating rates of unimolecular reactions 557

determined by the momentum density of states. This allows for sampling on an exact

energy surface rather than an energy shell of ® n ite width. Dumont [51, 52] has

developed a similar method and provided a mathematical proof for it.

The momenta in the microcanonical ensemble depends on the molecular

coordinates q :

3
$ N

i= "

p #
i

2m i

= E –V(q), (18)

where m i is mass corresponding to the ith momentum. The probability density

function is written as the product :

P(q, p) = d [E –H(q, p)] = Pq(q) Pp(p), (19)

where Pq is the probability density for q and Pp is the conditional probability density

for the conjugate momenta p given q. The con ® guration space probability density is

proportional to

[E –V(q)]( $ N Õ & ) " / # (20)

for an N-atom molecule. This weight function can be used in the same way as the

prelimit delta function as described above.

Unimolecular rate constants can be calculated from microcanonical distributions

of lifetimes of the trajectories. This requires that a de® nition of the reactant and

product phase spaces (often it is su� cient to consider only con® guration space) be

used. The `dividing surface ’ need not be as rigorously determined as in VTST since the

rate is based on lifetimes. When spatial criteria are used for the `end tests ’ for

dissociation, it is convenient to de® ne the lifetime as the time up to the last inner

turning point in the reaction coordinate ; this eliminates the variations in the lifetimes

due to the diŒerent times resulting from variations in the ® nal translational velocities

of the separating products [38].

The distribution of lifetimes, assuming a single decay rate, can be ® tted to

ln 0 N t

N
!
1 = – k(E )t, (21)

where N
!

is the total number of molecules in the ensemble and N
t

is the number of

unreacted molecules at time t. The decay lifetime is

s (E ) =
1

k(E )
. (22)

This assumes only that the molecules decay with random lifetimes, not that there is

rapid energy redistribution (as is assumed in the RRKM theory).

5. Monte Carlo methods for computing rates

Doll [71] pointed out that M etropolis Monte Carlo sampling can be used to

evaluate the corresponding classical phase space integrals to determine the sums and

densities of states for the RRKM expression. W hile the quantum features of the

RRKM theory are given up, this approach allows the use of realistic PESs. A bene® t

of this is that the Monte Carlo RRKM calculations can be performed for exactly the

same PES used in a classical trajectory simulation, thus allowing a direct comparison

of the results and a clear evaluation of the statistical against non-statistical eŒects.

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
5
8
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



558 D . L . Thompson

Classically, G ‹ (E ) is written as a 6n-dimensional phase-space integral

G ‹ (E ) =
1

h
n &

H=E

\ \ \ & 0
n

i= "

dq i dp i , (23)

where H is the system Hamiltonian ; the integration is over the con® guration space of

the activated complex. The density of states is given by

N(E ) =
dS(E )

dE
, (24)

where

S(E ) =
1

h
n &

! % H % E

\ \ \ & 0
n

i = "

dq i dp i . (25)

The integration is over the con® guration space of the reactants [63]. This reduces the

RRKM theory to a classical microcanonical TST.

There have been a number of applications of this approach. Some of the early

studies were for model systems ; most of these were done to investigate the eŒects of

anharmonicity and coupling. Noid et al. [72] showed that the classical phase-space

integrals calculated by the M onte Carlo method are in excellent agreement with the

exact quantal sums for the Henon ± Heiles system. Doll [73] showed how the method

could be used to calculate unimolecular rates and illustrated it for four-atom argon

clusters. Farantos et al. [74] applied the method to ozone and formaldehyde for

coupled anharmonic PESs ; the M onte Carlo rates for O
$

were compared with the

RRKM theory and are in good agreement. Bhuiyan and Hase [75] used the method to

study the in¯ uence of stretch ± bend coupling on sums and densities of states for model

triatomic systems. Viswanathan et al. [76] used the method with a variational

determination of the transition state to compute k(E ) for the unimolecular bond

® ssion reactions in methane and silane. They also extended the procedure to compute

the microcanonical rate coe� cient k(E , J ) for speci® c angular momentum states [77].

W ardlaw and M arcus [78, 79] used a combination of quantum state counting and

M onte Carlo phase-space integrations in RRKM calculations. Smith [80, 81] and

Klippenstein and co-workers [82± 85] have further developed the methods and applied

them in various ways for practical RRKM calculations.

A more useful approach, also suggested by Doll [71, 86], is to use Monte Carlo

methods to evaluate the integrals in the W igner [7(a), 87] phase space theory formalism

[9]. This requires the calculation of the frequency of crossings into the product region,

which in practice is determined by calculating the frequency of the system passing

through the `critical ’ surface (de® ned by the minimum ¯ ux) between reactants and

products along the reaction coordinate. A convenient way to develop the formulation

is to use concepts from Slater’ s [28] theory. In Slater’ s theory a `critical coordinate ’ q
c

is followed as a function of time and the reaction rate is assumed to be the frequency

with which q
c

attains a `critical extension ’ q
!
, that is the frequency of up-zeros of the

function q
c
(t)-q

!
. Slater assumed that the molecule could be represented by normal

modes and q
c

is a linear combination of normal mode coordinates ; we assume that the

molecule is described by a coupled anharmonic potential. The number of up-zeros of

the function q
c
(t)-q

!
over the time interval s is [88]

n( s ) = "
# &

s

!

d [q
c
(t) –q

!
] ) dq

c

dt ) dt, (26)
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Calculating rates of unimolecular reactions 559

where d is the Dirac delta function. The average value,

© n( s ) ª = "
# - &

s

!

d [q
c
(t) –q

!
] ) dq

c

dt ) . dt, (27)

is time independent for a stationary process. In practice, the process is made stationary

by imposing a re¯ ecting barrier along q
c

at q
!
. The unimolecular rate coe� cient is

k(E ) = "
# - d [q

c
(t) –q

!
] ) dq

c

dt ) . . (28)

The microcanonical average can be written in terms of phase-space integrals ; thus

the rate is

k(E ) =
(1 } h $ N ) ! dq ! "

#
d (E –H ) d (q

c
–q

!
) qd

c

(1 } h $ N ) ! dq ! d (E –H )
, (29)

where N is the number of degrees of freedom and H is the Hamiltonian. In the Monte

Carlo approximation, the integrals are replaced by sums :

k(E ) =
1

2N
steps

3
N steps

i = "

d (E –H ) d (q
c

–q
!
) r qd

c
r , (30)

where N
steps

is the number of phase-space points in the M arkov walk. An analogous

expression can be written for the thermal rate coe� cient (for example [89]) :

k(T ) =
"
#
! exp [ –b V(q)] d (q

c
–q

!
) r qd

c
r dq dp

! exp [ –b V(q)] dq dp
. (31)

This method is usually referred to as the MCVTST. Since the averaging is done

using M onte Carlo procedures, realistic PESs can be used, thus eliminating the usual

approximations of the PESs in TST calculations. Furthermore, it includes `multi-

dimensional eŒects ’ since the averaging is done for all the phase space ; this can

provide information, as well as improved predictions, not available with traditional

TST approaches ; that is, it explicitly includes the contributions to the rate for barrier

transmission oŒthe minimum-energy path (MEP).

The integrals over momentum space can be done analytically; thus the M arkov

walk is needed only for the con ® guration space [69, 70]. The M onte Carlo procedure

developed by Severin et al. [46] provides an e� cient means of performing the

M arkov walk restricted to a ® xed energy value [63].

These methods are based on random uniform sampling of the phase space relevant

to the process of interest, that is the reactant phase space extending through the

transition state to products. The rate of convergence can be greatly increased by

importance sampling. W ith importance sampling the Markov walk is biased so that

the phase space in the region of the transition state is sampled more frequently, thus

increasing the rate of convergence (for example [90]).

The MCVTST method is generally applicable to rate processes [63] however, most

applications have been for unimolecular reactions, and similar processes that occur at

gas± surface interfaces [40, 69, 70, 76, 91± 98]. Variations of it have also been used to

compute rates for proton tunnelling [99] and electronically non-adiabatic processes

[100].

6. Intramolecular dynamics diŒusion theory

As we discussed above, there is a range of energies starting at the upper limit of

statistical behaviour and extending up to the high-energy region at which classical
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560 D . L . Thompson

trajectory simulations become feasible where it is necessary to resort to a method such

as diŒusion theory to compute the non-statistical unimolecular decay rates. W e have

developed methods and shown them to be accurate, which can be used in conjunction

with TST and classical trajectories to predict the energy dependence of unimolecular

reaction rates over the entire energy range.

Kramers [101] formulated a theory of chemical reactions in which reaction is

treated as crossings of a potential barrier by one-dimensional particles under the

in¯ uence of a heat bath. The process is driven by the diŒusion of energy from the heat

bath to the `reacting particle ’ , and reaction corresponds to the diŒusion of phase-

space points from the reactant to the product region. Kramers’ theory has its most

obvious applications to reactions occurring in condensed phases (for example [102]) ;

however, diŒusion theory is also applicable to unimolecular reactions. The most direct

application is the description of the thermal excitation of molecules by collisions,

Nikitin [103] has given a thorough discussion of the `diŒusion theory of chemical

reactions ’ (DTCR). Kramers [101] pointed out in his original paper that the theory

could also be applied to the intramolecular dynamics of polyatomic molecules. The

molecule is considered to consist of a bath of vibrational modes that exert Brownian

forces upon the reaction coordinate mode (the `single particle ’ ). This provides a means

of calculating the rates of unimolecular reactions for IVR-limited conditions. The

accuracy, of course, depends on the validity of the assumption that the dynamics that

determine the ¯ ow of energy from the bath to the reaction coordinate are chaotic.

We have shown that classical diŒusion theory can be used to compute rates of

unimolecular reactions, and how the parameters in the theory can be determined from

classical trajectory results [104, 105]. W e refer to this approach as intramolecular

dynamics diŒusion theory (IDDT). The critical parameter, the rate of energy ¯ ow into

the reaction coordinate, can be determined in one of two ways. In one approach, short-

time dynamics can be used to compute the rate of energy ¯ ow from the bath modes to

the reaction coordinate. Alternatively, the required parameter can be determined by

using the rate at a single total energy. Once the diŒusion rate parameter is determined,

it can be used to predict the energy dependence of the rate over the entire energy range.

Thus, IDDT provides considerable practical bene ® ts since it can be used to compute

rates for energies where it is not practical to perform direct classical trajectory

simulations of the reactions and where statistical treatments are not appropriate. The

calculations require much less computer time than do standard classical trajectory

direct simulations of reactions.

The `parameterization ’ of IDDT using short-time classical trajectory simulations

to determine the rate of energy ¯ ow into the reaction coordinate not only is of practical

use but also illustrates the fundamental nature of intramolecular dynamics underlying

unimolecular reactions (and supports the basic assumptions of approaches such as

reaction-path Hamiltonian theory [106± 108]).

The reaction rate constant k(E ) can be written in terms of the ¯ ux of phase space

points through the critical surface S* that divides the reactants from the products :

k(E ) =
!
S *

f(p, q, t) v v dS*

!
V

f( p, q, t) d C
, (32)

where v v is the velocity perpendicular to the critical surface. The integral in the

numerator is over the critical surface and that in the denominator over the phase space

of the reactants. If we assume that the initial distribution f( p, q, t = 0) is micro-
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Calculating rates of unimolecular reactions 561

canonical, the evolution of the ensemble of phase space points is given by the Liouville

equation

¥ f

¥ t
= – 3

i 0 ¥ H

¥ p i

¥ f

¥ q i

–
¥ H

¥ q i

¥ f

¥ p i 1 , (33)

where H is the system Hamiltonian. Since it is not practical to solve this equation,

M onte Carlo classical trajectory methods are commonly used in practical applications.

However, replacing the exact Liouville equation by the approximate Fokker± Planck

equation (for example [109]) provides a viable alternative to classical trajectories,

which can be prohibitively expensive at low energies.

The formalism for describing the energy diŒusion within a molecule for the

microcanonical distribution can be obtained by using a diŒerent interpretation of the

physical meanings of the parameters in Nikitin ’ s DTCR equations [104, 105]. The

kinetic Fokker± Planck equation that needs to be solved is

¥ F(E
RC

, t)

¥ t
= –

¥
¥ E

RC
9 b 1

2

¥
¥ t

( D E #
RC

) 0 F(E
RC

, t) 1
1

b

¥ F(E
RC

, t)

¥ E
RC

1 : –
F(E

RC
, t)

s
rxn

(E
RC

)
, (34)

where the reaction rate constant is k(E ) = 1 } s
rxn

. For a thermal distribution, b =

1 } j T ; however, for the microcanonical distribution this parameter can be treated as

the eŒective temperature T
eff

and b E 1 } j T
eff

= n } E , where E is the total energy and n

is the number of molecular modes. The term

b(E
rxn

) = b
1

2

¥
¥ t

( D E #
RC

) = b D(E ), (35)

where D (E ) is the diŒusion coe� cient, characterizes the time dependence of the energy

¯ ow into the reaction coordinate from the bath modes and thus is the dynamical

variable that de® nes the reaction rate in IDDT.

We assume that the reaction coordinate experiences a random force due to the bath

modes. This, of course, is an approximation in the case of intramolecular dynamics,

but an acceptable one in practice as we have demonstrated with calculations [31, 104,

105].

We are interested in long-time non-statistical reactions, where the reaction time is

fast compared with that for the energy transfer into the reaction coordinate. (On short

times the initial rate of reaction will be statistical even at very high energies since the

reactions are directly due to an initial microcanonical distribution). If the coupling is

weak (corresponding to the weak-collision limit), the energy ¯ ow to the reaction

coordinate will be su� ciently slow that D(E ) ’ k(E ). Thus, we can assume that, when

the energy in the reaction coordinate attains su� cient energy E
b

for crossing the

critical surface to products, the molecule immediately reacts, and the long-time non-

statistical behaviour of the reaction can be taken into account by assuming an

absorbing boundary condition. The reaction rate coe� cient is then

k(E ) = s Õ "
rxn

= 2 &
Eb

!

q (E ) exp ( –b E
RC

) 0 & Eb

ERC

exp ( b Eh
RC

)

( ¥ } ¥ t) © D Eh
RC

ª
dEh

RC 1 dE
RC

. (36)

We have shown that the ensemble average ( ¥ } ¥ t) © D E #
RC

ª can be computed by using

short-time classical trajectory simulations [104, 105]. Ensembles of trajectories for
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562 D . L . Thompson

various values of E
RC

are computed at a given total energy E . The rate of energy ¯ ow

in the reaction coordinate is determined by calculating the energy in it at ® xed

intervals. That is, the rates of spreading of initially narrow distributions of energy in

the reaction coordinate are determined for ensembles of trajectories integrated for

short times (about a few femtoseconds) at a ® xed total energy E.

We have shown that this approach can be used to predict accurately, based on

comparisons to direct classical trajectory simulations of the reactions, rates for the

unimolecular dissociation reactions in disilane [104] and dimethylnitramine [105].

The Si± Si bond ® ssion in disilane, H
$
Si E SiH

$
! 2SiH

$
, is a case where one would

expect IDDT to be most applicable since the reaction coordinate mode (the Si E Si

stretching motion) is relatively isolated from the remaining molecular modes and,

indeed, we ® nd that the theory works well. The value of the rate constant for Si E Si

bond ® ssion in disilane computed by direct classical trajectory simulations of the

reaction at a total energy of 400 kcal mol Õ " is 5.1 3 10 " " s Õ " and the corresponding

IDDT value is 4.6 3 10 " " s Õ " [104]. However, we also ® nd that IDDT is accurate in

cases, for example N E N bond rupture in dimethylnitramine, (CH
$
)
#
N E NO

#
!

(CH
$
)
#
N 1 NO

#
, where the reaction coordinate mode is not separable [105]. The IDDT

predicts the same energy dependence as predicted by classical trajectory simulations,

and we have shown how it can be used to interpolate qualitatively between the IVR-

limited regime and the statistical regime near the reaction threshold [31].

In practice the direct determination of the diŒusion coe� cient from short-time

dynamics calculations can be complicated by the quasiperiodic behaviour of the

molecular vibrations that is commonly observed in large polyatomic molecules, even

at relatively high energies [30]. As Shalashilin and Thompson [31] have shown,

accurate predictions can be made by properly selecting computational parameters

such as the sizes of histogram boxes.

The advantages of determining the diŒusion coe� cient from short-time dynamics

are obvious. Not only does it greatly reduce the computer time needed to determine the

rates, but also it permits predictions to made on the basis of less than the full global

PES. The aspects of the potential that determine the intramolecular dynamics

responsible for the exchange of energy between the reaction coordinate modes and the

bath modes are all that is required (much in the spirit of reaction-path Hamiltonian

theory [107, 110, 111]). Of course, a completely realistic potential can also be used if

available.

Kramers’ energy diŒusion theory is the basis for an alternative approach for

predicting reaction rates over the full dynamic energy range by determining the

diŒusion coe� cient from a single value of k(E ) [112]. It is useful to rewrite the

Fokker± Planck equation in terms of the density of states q (E ) and the diŒusion

coe� cient D(E ) :

¥ P(E, t)

¥ t
= – q Õ "

¥
¥ E 9 D (E ) q (E ) 0 b 1

¥
¥ E 1 P(E , t) : –k(E ) P(E, t). (37)

This gives the time evolution of the energy distribution of a single particle in contact

with a heat bath, which is characterized by the diŒusion coe� cient D (E ).

Kramers showed, assuming constant friction, that the distribution P(E , t) evolves

according to

¥ P(E , t)

¥ t
= n m

¥
¥ E

I 0 1 1 b Õ "
¥

¥ E 1 P(E , t), (38)
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Calculating rates of unimolecular reactions 563

where n is the friction constant, I is the action and m = ¥ E } ¥ I. Then the diŒusion

coe� cient is

D(E ) = n b Õ " m (E ) I(E ). (39)

The reaction time can be written as

s
rxn

=
1

k
rxn

= & Eb

!

b exp ( b E )

n m (E ) I(E ) q (E )
dE & Eb

!

q (Eh ) exp ( –b Eh ) dEh . (40)

The friction constant n can be ® tted to a known value of the microcanonical rate

coe� cient k and, assuming a simple functional form for the reaction coordinate

potential, for example the M orse potential, the action and density of states can be

readily calculated. W e have demonstrated this approach for the unimolecular

decompositions of disilane, dimethylnitramine [112] and hexahydro-1,3,5-trinitro-

1,3,5-s-triazine [113].

7. Semiclassical tunnelling

Fortunately, many of the processes of interest to chemists can be described

classically ; however, phenomena due to interference eŒects, such as tunnelling, can be

important in isomerization, dissociation and bimolecular reactions (for example

[114]). Proper treatment of both the multidimensional dynamics and the quantum

eŒects in large systems usually requires the use of a semiclassical approach. W e have

developed a practical approach for including semiclassical tunnelling corrections in

classical trajectory simulations. Since we have recently reviewed these methods [115],

only a brief discussion of them will be given here.

Many semiclassical methods for treating tunnelling are constrained by their

`rigorousness ’ and are di� cult to apply to systems with many degrees of freedom.

These methods include the instanton model [116± 119] and Miller’ s classical S-matrix

theory [120± 124] and are `rigorous ’ within the W entzel ± Kramers± Brillouin ap-

proximation for one dimension but are not easily applied in many degrees of freedom.

Methods based on tunnelling corrections of TST rates are widely used [125± 128].

This approach uses simple models to compute the tunnelling probabilities at turning

points along the MEP. As shown in numerous applications [128], these methods

provide accurate corrections to classical thermal rates. However, they provide no

information about dynamical eŒects since the tunnelling corrections are based on

tunnelling paths originating from the M EP (for an illustration of tunnelling

probabilities for paths oŒthe MEP see ® gure 11 of [129]).

A realistic treatment of the dynamics eŒects in tunnelling requires explicit

consideration of the behaviour of all the degrees of freedom on the global PES. A

practical method for doing this is based on tunnelling corrections in classical trajectory

simulations. W aite and Miller [130] introduced the basic idea for incorporating

tunnelling corrections in standard classical trajectory simulations, much in the spirit of

the Tully ± Preston [131] surface hopping model, as a way of explicitly treating the

multidimensional eŒects.

The classical trajectory plus tunnelling model is conceptually simple (for example

[132]). Classical trajectories with initial conditions selected from the appropriate

distributions are propagated in the reactant phase space and, when a trajectory

encounters a turning point at the barrier, the JeŒries± Wentzel± Kramers± Brillouin

tunnelling probability is computed. The cumulative tunnelling probability is calculated

for the ensemble of trajectories. The essence of the problem is the determination of the

tunnelling paths. The appropriate paths are those that minimize the action ; however,
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these are di� cult to determine exactly for systems with many degrees of freedom. It is

necessary to use approximations based on some pragmatically prede® ned tunnelling

coordinate.

Quantum-mechanically, the amplitude for the tunnelling transition from reactant

state }
i
to product state }

f
is © }

i
r H r }

f
ª . In a semiclassical treatment, one could choose

classical trajectories that lie on the invariant torus that corresponds to the quantum

state }
i
. The action integrals can be quantized by using the EBK condition (4) (for

example [133]). Adiabatic switching provides a practical way of doing this [58]. The

tunnelling paths would extend from caustics along these classical trajectories in the

`reactant ’ well to caustics in the `product ’ phase space. Theoretically, the tunnelling

direction is along the path of least action. Makri and M iller [134] have shown how this

can be done in low-dimensional models ; however, this is di� cult to do for

multidimensional systems. Also, this assumes stationary states ; this is not rigorously

correct for tunnelling states.

The practical di� culty in applying this approach, as well as other related

applications of this general semiclassical approach, is locating the two ends of the

tunnelling paths. However, the `root search ’ problem can be avoided by taking

advantage of a fundamental property of quantum mechanics. It is most easily

understood in terms of resonant tunnelling between symmetric double wells [135].

Quantum-mechanically, tunnelling is the result of interference of the waves in the two

wells, with the amplitude damped under the barrier in the classically forbidden region.

The damping and penetration are symmetrical, and one needs to consider explicitly

only half of the process since the other half is the mirror image of the ® rst. That is, the

entire process can be described by explicitly treating the dynamics in the reactant well

and the penetration of the particle into the classically forbidden region up to the

midpoint of the barrier. Then, the result is simply multiplied by two to obtain the

probability of tunnelling between the two identical states. Thus, it is not necessary to

locate both ends of the tunnelling paths, obviating the most di� cult problem in

practical applications of the semiclassical approach to multidimensional systems. It is

also important to note again that this is consistent with the fundamental features of

quantum mechanics.

We assume that energy levels are widely spaced, as they would be at low energies

where tunnelling is most important. Thus, in general, double-well systems can be

considered to have only two states that are close in energy and well separated from

other states. Thus, there are two eigenvalues E
"

and E
#
:

E ‰ = "
#
(E

"
1 E

#
)‰"

#
[(E

"
1 E

#
) # 1 4 r H

" #
r # ] " / # . (41)

where H
" #

is the shift in the energy levels, which, assuming that the two wells are

identical, is given by the semiclassical expression

r H
" #

r = ò m exp 0 –
S

ò 1 (42)

where m is the vibrational frequency at energy E in the well and S is the action integral

through the barrier :

S = &
x #

x "

r p
x
r dx. (43)

x
"

and x
#

are the classical turning points on the two sides of the barrier. The basic idea
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Calculating rates of unimolecular reactions 565

in our approach is that a classical trajectory is propagated in the `reactant ’ well, and

each time that a turning point is encountered in the predetermined tunnelling direction

x the amplitude factor exp ( –S } ò ) is computed. The energy level splitting is given by

D E = 2 r H
" #

r = 2 ò
d

dt
© A(t) ª , (44)

where

A(t) = R h(t –tn ) exp 0 –
S

ò 1 (45)

is the accumulated amplitude factor. tn are the times at which the trajectory is at a

turning point and h is the usual step function. The angular brackets imply an average

over the initial vibrational phase.

A similar approach can be used to treat tunnelling in asymmetric systems. In the

case of tunnelling between asymmetric states, one merely needs to calculate the

probability amplitudes for both `halves ’ of the processes [115]. That is, one must

consider barrier penetrations from both directions and then add the two results to

obtain the probability for tunnelling between the two-resonant states. The case of

tunnelling into a continuum of states, that is dissociative tunnelling, the problem is

greatly simpli® ed since there is always a state available in the product region at the

ends of all paths starting at the turning points on the barrier within the reactant well.

It is necessary to de® ne the `tunnelling coordinate ’ ; however, the rate (or splitting) is

an ensemble average of tunnelling paths and the arbitrariness of a prede® ned

tunnelling direction as well as the nature of the paths (straight lines or curves) tend not

to be critical [136].

Initial conditions are selected using the standard quasiclassical approximation to

sample normal mode coordinates and momenta [55]. That is, they are selected for the

quantized torus of the zeroth-order harmonic Hamiltonian. This is adequate, even

appropriate, for semiclassical tunnelling calculations. W e have shown that adiabatic

switching and standard quasiclassical initial conditions give comparable tunnelling

splittings for a two-dimensional double-well model [136]. The level splitting, which is

an ensemble-averaged quantity, is accurately predicted within the quasiclassical

approximation because of averaging of the tunnelling paths.

We have applied this approach to the various kinds of tunnelling situation. These

applications include tunnelling in malonaldehyde [133], methyl malonaldehyde [137],

tropolone [138], aziridine [139], HSiOH [140] and H 1 H
#

[141]. Thus, we have

illustrated the method for most types of tunnelling process of interest : simple double-

well level splitting, asymmetric double-well intramolecular conversion, tunnelling that

includes more than a single coordinate (methyl malonaldehyde), and molecular

collisions (H 1 H
#
).

8. Concluding comments

One of the goals in theoretical chemical dynamics is to develop the capability of

computing rates of complex processes by using su� ciently realistic models that the

results are comparable with experimental observations. The methods described here

can be used to perform practical calculations of rates for unimolecular reactions in

large molecules. These methods include straightforward classical trajectory simula-

tions, M onte Carlo variational transition state theory, intramolecular dynamics

diŒusion theory, and a semiclassical approach for including tunnelling corrections in

standard classical trajectory calculations.
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